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Abstract. We discuss the evaluation of the collinear single-logarithmic contributions to virtual electroweak
corrections at high energies. More precisely, we prove the factorization of the mass singularities originating
from loop diagrams involving collinear virtual gauge bosons coupled to external legs. We discuss, in partic-
ular, processes involving external longitudinal gauge bosons, which are treated using the Goldstone-boson
equivalence theorem. The proof of factorization is performed within the ’t Hooft–Feynman gauge at one-
loop order and applies to arbitrary electroweak processes that are not mass-suppressed at high energies.
As basic ingredients we use Ward identities for Green functions with arbitrary external particles involving
a gauge boson collinear to one of these. The Ward identities are derived from the BRS invariance of the
spontaneously broken electroweak gauge theory.

1 Introduction

In the energy range above the electroweak scale, s1/2 �
MW , electroweak radiative corrections are dominated by
double-logarithmic (DL) terms of the form α log2 (s/M2

W )
and single-logarithmic (SL) terms of the form α log(s/
M2

W ) involving the ratio of the energy to the electroweak
scale (see [1–8] and references therein). Such corrections
grow with energy, and at s1/2 = 0.5–1TeV they are typ-
ically of order 10% of the theoretical prediction. In the
TeV range, the SL terms are numerically of the same size
as the DL terms.

For electroweak processes that are not mass-suppressed
at high energies, these leading logarithmic corrections are
universal. On the one hand, single logarithms originating
from short-distance scales result from the renormalization
of dimensionless parameters, i.e. the running of the gauge,
Yukawa, and scalar couplings. On the other hand, uni-
versal logarithms originating from the long-distance scale
MW � s1/2 are expected to factorize, i.e. they can be
associated with external lines or pairs of external lines in
Feynman diagrams. They consist of DL and SL terms orig-
inating from soft-collinear and collinear (or soft) gauge
bosons, respectively, coupled to external legs. The non-
logarithmic terms are in general non-universal and have
to be evaluated for each process separately if needed.

In the recent literature (see [1–8] and references
therein), most interest has been devoted to electroweak
long-distance corrections, which have often been compared
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to the well-known soft and collinear singularities observed
in QCD (see for instance [9]). This is a useful guideline in
order to understand universal effects, and also to discuss
specific features that distinguish a spontaneously broken
gauge theory from a symmetric one.

The main difference between QCD and the electroweak
standard model is that the masses of the weak gauge
bosons provide a physical cut-off for real Z- and W -boson
emission. Therefore, for a sufficiently good experimental
resolution, soft and collinear weak-boson radiation need
not be included in the theoretical predictions and, except
for electromagnetic real corrections, we can restrict our-
selves to large logarithms originating from virtual correc-
tions.

Here we concentrate on the factorization of virtual col-
linear corrections in high-energy electroweak reactions. In
QCD, factorization is strictly connected to gauge symme-
try [9]. Therefore, it is natural to ask if and how factoriza-
tion is affected by the spontaneous breaking of the gauge
symmetry within the electroweak theory.

In the literature [10], this question has been avoided by
assuming that “the electroweak theory is in the symmet-
ric phase at high energies”. In this case, one restricts one-
self to the symmetric part of the electroweak Lagrangian
(Lsymm), which corresponds to a vanishing vacuum expec-
tation value (vev) of the scalar doublet and depends only
on dimensionless parameters; gauge-boson masses in the
propagators act merely as infrared cut-off. In this “sym-
metric approach”, methods and results obtained within
QCD are extended to the electroweak theory [3,4,10]. Un-
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der these assumptions, only the following specifically elec-
troweak ingredients need to be included:

(1) Yukawa and scalar sector: since the dimensionless Yu-
kawa and scalar couplings are proportional to the
fermion and Higgs-boson masses, respectively, their
effects are enhanced if these particles are heavy. Espe-
cially, one finds large logarithmic corrections propor-
tional to m2

t/M
2
W log (s/M2

W ) for processes involving
heavy quarks or Higgs bosons.

(2) Mixing of neutral gauge bosons: the neutral mass-
eigenstate gauge bosons A and Z originate from mix-
ing between the U(1) and SU(2) eigenstates. Since the
adjoint representation of the SU(2)×U(1) group is not
irreducible, factorization is non-diagonal for processes
involving external photons and Z bosons. Note that
the definition of the mass eigenstates requires one to
consider the theory at the electroweak scale.

The symmetric approach seems to be adequate for
electroweak processes involving only fermions, transverse
gauge bosons, and Higgs bosons as external particles, since
these states are already present in the symmetric phase.
However, it is less clear whether this approach is adequate
for processes involving longitudinal gauge bosons, which
originate from spontaneous symmetry breaking.

For a rigorous treatment and, in particular, for pro-
cesses involving arbitrary external fields corresponding to
mass eigenstates of the electroweak theory, we need a
“complete electroweak” approach. Therefore, we calculate
the leading logarithmic one-loop corrections that originate
from the complete Lagrangian, including terms propor-
tional to the vev. However, we restrict ourselves to pro-
cesses that are not mass-suppressed in the high-energy
limit, i.e. processes originating from Lsymm in lowest or-
der. A process is called mass-suppressed if its matrix ele-
ment with mass dimension d does not scale as Ed in the
high-energy limit E � MW but with Ed−nMn

W , n > 0.
To prove the factorization of the virtual collinear single
logarithms, we use Ward identities that are based on the
symmetry of the complete Lagrangian.

In particular, we discuss the effects that are related to
the part of the Lagrangian that results from spontaneous
symmetry breaking (Lv), i.e. the part proportional to the
non-vanishing vev. The part Lv consists of terms that are
bilinear and trilinear in the fields. In lowest order, bilinear
terms in the scalar sector provide gauge-boson masses and
mixing between gauge bosons and would-be Goldstone
bosons. Corresponding mixing terms are introduced in the
’t Hooft gauge-fixing Lagrangian. As a consequence of the
BRS invariance, the mixing terms lead to the well-known
Goldstone-boson equivalence theorem (GBET) [11], which
relates longitudinal gauge bosons to would-be Goldstone
bosons in the high-energy limit. Beyond tree level, also the
trilinear couplings with mass dimension in Lv have to be
taken into account, since they give leading SL corrections
to the mass and mixing terms, and thus corrections to the
GBET (for the corrections to the GBET see [12]).

The complete one-loop results for high-energy lead-
ing electroweak DL and SL corrections have been pre-
sented in [7]. They include soft-collinear, purely collinear,

purely soft, as well as parameter-renormalization contri-
butions. In this article we concentrate on the purely col-
linear SL corrections. Especially, we prove the non-trivial
factorization of the part originating from mass-singular
loop diagrams in the ’t Hooft–Feynman gauge. In Sect. 2
(and AppendixA) we discuss mass singularities originat-
ing from loop diagrams and show that they are restricted
to virtual gauge bosons coupled to external lines. The fac-
torization of these mass singularities is demonstrated in
Sect. 3 using collinear Ward identities. We also recall the
complete gauge-invariant results for the collinear and soft
single-logarithmic corrections given in [7], including the
part originating from renormalization (field-renormaliza-
tion constants and corrections to the GBET). The colli-
near Ward identities, which constitute the basis for the
proof, are derived in Sect. 4 using the BRS invariance of
the electroweak theory (Appendix B). Our conventions for
Green functions can be found in Appendix C.

2 Collinear mass singularities

2.1 Notation

We consider electroweak processes involving n arbitrary
external particles. Lowest-order (LO) matrix elements are
denoted by

Mϕi1 ...ϕin

0 (p1, . . . , pn), (2.1)

where all momenta are considered to be incoming. The
(incoming) fields ϕik represent physical fields in the stan-
dard model, i.e. fields corresponding to mass eigenstates
for fermions, gauge bosons, or Higgs bosons. Longitudinal
gauge bosons are replaced by the corresponding would-
be Goldstone bosons via the Goldstone-boson equivalence
theorem (GBET). In the limit where all external momenta
pk are on-shell, and all other invariants are much larger
than the gauge-boson masses, i.e.

(
N∑
l=1

pkl

)2

∼ s � M2
W , (2.2)

with 1 < N < n − 1 and kl �= kl′ for l �= l′, the one-
loop corrections to (2.1) receive large mass-singular log-
arithmic contributions. Here, we assume that all invari-
ants are of the order s, the square of the typical energy
scale of the considered process, and we restrict ourselves
to purely collinear contributions containing terms of the
form α log (s/M2), where M is equal to MW or to a light-
fermion mass. We show that these corrections δCMϕi1 ...ϕin

factorize and can be associated to the external states,

δCMϕi1 ...ϕin =
n∑

k=1

∑
ϕi′

k

δC
ϕi′

k
ϕik

Mϕi1 ...ϕi′
k
...ϕin

0 . (2.3)

This universal (process-independent) result has been ob-
tained within the ’t Hooft–Feynman gauge, using the in-
dependence of the S matrix of the scale µ of dimensional
regularization [7]. For external fermions, transverse gauge
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bosons, and Higgs bosons, the large logarithms are isolated
in the µ-dependent part of field-renormalization constants
(FRC’s) δZ and universal collinear factors δcoll from mass-
singular loop diagrams,

δC
ϕi′

k
ϕik

=
(

1
2
δZϕi′

k
ϕik

+ δcoll
ϕi′

k
ϕik

)∣∣∣∣
µ2=s

. (2.4)

External longitudinal gauge bosons V b
L = ZL,W

±
L are

related to the corresponding would-be Goldstone bosons
Φb = χ, φ± using the GBET. The corresponding collinear
corrections are given by

δC
V b′
L V b

L
=
(
δV b′V bδCΦb

+ δcoll
Φb′Φb

)∣∣∣
µ2=s

, (2.5)

and depend on the collinear factors for would-be Gold-
stone bosons and on the corrections δCΦb

to the GBET.
These latter contain the FRC’s for gauge bosons, longi-
tudinal self-energy and mixing-energy contributions, and
mass counterterms [7].

The FRC’s and the corrections to the GBET factorize
in an obvious way. Explicit results for these contributions
have been presented in [7]. In the following, we discuss
only the non-trivial factorization of mass-singular trun-
cated loop diagrams leading to the collinear factors δcoll.

2.2 Mass singularities in loop diagrams

As has been proved by Kinoshita [13], mass-singular loga-
rithmic corrections arise from loop diagrams where an ex-
ternal on-shell line splits into two collinear internal lines,

ϕj

ϕi

ϕk

. (2.6)

Here and in the following, all on-shell external lines that
are not involved in our argumentation are omitted in the
graphical representation. The diagrams have to be under-
stood as truncated; the self-energy insertions in external
legs and the corresponding mass singularities enter the
FRC’s in (2.4).

We consider splittings ϕi(p) → ϕj(q)ϕk(p− q) involv-
ing arbitrary combinations of fields. These lead to loop
integrals of the type

I = −i(4π)2µ4−D (2.7)

×
∫

dDq

(2π)D
Nijk(q)

(q2 −M2
j + iε)[(p− q)2 −M2

k + iε]
.

The part denoted by Nijk(q) is kept implicit. It consists of
the LO contribution from the “white blob” in (2.6), of the
wave function (spinor or polarization vector) correspond-
ing to the external line ϕi, of the ϕiϕjϕk vertex, and of the
numerators of the ϕj and ϕk propagators. Since the soft
contributions can be treated in the eikonal approximation
[7], we assume that the part of Nijk(q) that is singular in

the soft limits qµ → 0 and qµ → pµ has been subtracted
(see Sect. 3).

The mass singularity in (2.7) originates from the de-
nominators of the ϕj and ϕk propagators in the collinear
region qµ → xpµ. This is discussed in detail in Appendix A,
where we show that the mass singularity can be extracted
from (2.7) by treating the integrand Nijk(q) in the col-
linear approximation (A.11). The resulting contribution
reads

I
LA= log

(
µ2

M2

)∫ 1

0

dxNijk(xp) (2.8)

in logarithmic approximation (LA), where M2 ∼ max(p2,
M2

j ,M
2
k ). Since we consider all masses MW , MZ , MH , and

mt to be of the same order of magnitude, the scale M is
either given by MW or by a light-fermion mass.

If we now apply the collinear approximation (A.11)
to all splittings ϕi → ϕjϕk, which are allowed by the
electroweak Feynman rules [14], it turns out that Nijk is
mass-suppressed in most of the cases. This can be easily
verified by looking at the external part of the diagram
(2.6), containing the ϕi wave function, the ϕiϕjϕk vertex,
and the numerators of the ϕj and ϕk propagators. Many
contributions are proportional to M , p2, pµεµ(p), or p/u(p)
and thus mass-suppressed. Consider as an example the
case VT → ΨΨ̄ , where a transverse gauge boson splits into
a fermion–antifermion pair. Here

N(q) ∝ εµT(p)(p/ − q/)γµq/

−→ x(1 − x)εµT(p)(2pµp/− p2γµ) (2.9)

is mass-suppressed in the collinear limit, qµ → xpµ, owing
to pµε

µ
T(p) = 0 and p2 � s. Similar suppressions occur

in all cases, except for the splittings ϕi → V aϕi′ where
a virtual gauge boson V a = A,Z,W± is emitted and ϕi
and ϕi′ are both fermions, gauge bosons, or scalars. These
unsuppressed splittings are considered in Sect. 3.

3 Factorization of collinear singularities

In this section, we evaluate the loop diagrams (2.6) involv-
ing splittings

ϕik(pk) → V a
µ (q)ϕi′

k
(pk − q). (3.1)

As mentioned in the previous section, we subtract soft con-
tributions that give rise to singularities of the integrand
N(q) in the region qµ → 0. These result from diagrams
where the gauge boson V a couples to another external leg
ϕil in the eikonal approximation (the term in the third
line of (3.2)). These soft contributions can be treated sep-
arately [7]. For the remaining SL collinear singularities we
derive the factorization identities

δcollMϕik (pk) =

=
∑

V a=A,Z,W±

∑
ϕi′

k







V a

ϕi′
k

ϕik




trunc.
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−
∑
l �=k

∑
ϕi′

l




V a

ϕik

ϕil

ϕi′
k

ϕi′
l




eik.




coll.

=
∑
ϕi′′

k

ϕi′′
k

δcoll
ϕi′′

k
ϕik

, (3.2)

where the curly bracket, consisting of truncated (trunc.)
diagrams and subtracted eikonal contributions (eik.), is
evaluated in collinear approximation (coll.). The sum over
V a extends over W+ and W−, although in many cases
only one of them contributes. The detailed proof of (3.2)
depends on the spin of the external particles, which may
be scalar bosons (ϕi = Φi), transverse gauge bosons (ϕi =
V a

T ), or fermions (ϕi = Ψκ
j,σ). However, its basic structure

can be sketched in a universal way and consists of two
main steps:
(1) After insertion of the expressions for the explicit ver-
tices and propagators, explicit subtraction of the eikonal
contributions, and in the limit of collinear gauge-boson
emission, the l.h.s. of (3.2) turns into1

δcollMϕik (pk) =
∑

V a=A,Z,W±

∑
ϕi′

k

µ4−D

×
∫

dDq

(2π)D
−ieI V̄

a

ϕi′
k
ϕik

(q2 −M2
V a)[(pk − q)2 −M2

ϕi′
k

]

×Kϕik
lim

qµ→xpµ
k

qµ




ϕi′
k
(pk − q)

V a
µ (q)

−
∑
ϕj

ϕi′
k
(pk − q) ϕj(pk)

V a
µ (q)




, (3.3)

where ieIV
a

ϕi′ϕi
is the coupling corresponding to the

V aϕ̄i′ϕi vertex with all fields incoming. The IV
a

are the
generators of SU(2) × U(1) transformations of the fields
ϕik and are discussed in detail in Appendix B of [7]. The
charge-conjugate fields are denoted by ϕ̄ik . For scalar
bosons and transverse gauge bosons Kϕik

= 1, while for

1 Here and in the following the +iε prescription of the prop-
agators is suppressed in the notation

fermions Kϕik
= 2. The first diagram appearing in (3.3)

results from the first diagram of (3.2) by omitting the
explicit vertex and propagators. The second diagram in
(3.3) originates from the truncation of the self-energy and
mixing-energy (ϕiϕj) insertions in the first diagram of
(3.2). Equation (3.3) is derived in Sects. 3.1–3.3.
(2) The contraction of the diagrams between the curly
brackets on the r.h.s. of (3.3) with the gauge-boson mo-
mentum qµ can be simplified using the Ward identities

lim
qµ→xpµ

k

qµ




ϕi′
k
(pk − q)

V a
µ (q)

−
∑
ϕj

ϕi′
k
(pk − q) ϕj(pk)

V a
µ (q)




=

=
∑
ϕi′′

k

ϕi′′
k

(pk)

eIV
a

ϕi′′
k
ϕi′

k

, (3.4)

which are fulfilled in the collinear approximation and valid
up to mass-suppressed terms. These Ward identities are
derived in Sect. 4 using the BRS invariance of the sponta-
neously broken SU(2) ×U(1) Lagrangian.

Combining (3.4) with (3.3), we obtain (3.2) with the
collinear factor

δcoll
ϕi′′ϕi

=
∑

V a=A,Z,W±

∑
ϕi′

µ4−D (3.5)

×
∫

dDq

(2π)D
−iKϕie

2IV
a

ϕi′′ϕi′ I
V̄ a

ϕi′ϕi

(q2 −M2
V a)[(p− q)2 −M2

ϕi′ ]

LA=
α

4π
Kϕi

[
Cew
ϕi′′ϕi

log
µ2

M2
W

+ δϕi′′ϕiQ
2
ϕi

log
M2

W

M2
ϕi

]
,

where the effective electroweak Casimir operator is defined
by ∑

V a=A,Z,W±

∑
ϕi′

IV
a

ϕi′′ϕi′ I
V̄ a

ϕi′ϕi
= Cew

ϕi′′ϕi
(3.6)

and explicitly given in AppendixB of [7]. The integral
is evaluated in AppendixA. For virtual massive gauge
bosons V a = Z,W±, the scale of the logarithm is de-
termined by MW , for photons by the mass Mϕi of the
external particles.

In this section, we use the collinear Ward identities to
derive (3.2) for external scalars, transverse gauge bosons,
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and fermions. To this end, we introduce the following
shorthand notation for matrix elements (2.1)

Mϕik (pk) = vϕik
(pk)G

ϕ
ik
O
(pk), (3.7)

i.e. we concentrate on a specific external leg ϕik , and only
its momentum pk and wave function vϕik

(pk) are kept ex-
plicit. The wave function vϕik

(pk) equals 1 for scalars and
is given by the Dirac spinors for fermions and the polar-
ization vectors for gauge bosons. It is contracted with the
truncated Green function G (underlined field arguments
correspond to truncated external legs; other conventions
concerning Green functions are given in Appendix C). The
operator

O(r) =
∏
l �=k

ϕil(pl), r =
∑
l �=k

pl, (3.8)

represents the remaining external legs. The external lines
corresponding to the operator O are always assumed to
be on-shell and contracted with the corresponding wave
functions. These wave functions are always suppressed in
the notation. Moreover, often also the operator O and the
corresponding total momentum r are not written.

Note that in intermediate results, owing to gauge-bo-
son emission ϕik → V aϕi′

k
, the matrix elements (3.7)

are modified into expressions where the wave function
vϕik

(pk) with mass p2
k = M2

ϕik
is contracted with a line

ϕi′
k

carrying a different mass M2
ϕi′

k

. In the limit s �
M2

ϕik
,M2

ϕi′
k

, the modified matrix elements are identified

with matrix elements for ϕi′k , since

vϕik
(pk)G

ϕ
i′
k

O
(pk) = Mϕi′

k (pk)+O
(
M2

s
Mϕi′

k

)
. (3.9)

For the Green functions corresponding to the diagrams
within the curly brackets in (3.3) we introduce the short-
hand

G
[V aϕ

i
]O

µ (q, p− q, r) = G
V aϕ

i
O

µ (q, p− q, r)

−
∑
ϕj

G
V aϕ

i
ϕj

µ (q, p− q,−p)Gϕ
j
O(p, r). (3.10)

3.1 Factorization for scalars

We first consider the collinear enhancements generated by
the virtual splittings

Φik(pk) → V a
µ (q)Φi′k (pk − q), (3.11)

where an incoming on-shell Higgs boson or would-be Gold-
stone boson Φik = H,χ, φ± emits a virtual collinear gauge
boson V a = A,Z,W±. The corresponding amplitude is
given by

δcollMΦik (pk) =

=
∑
V a

∑
Φi′

k







V a

Φi′
k

Φik




trunc.

−
∑
l �=k

∑
ϕi′

l




V a

Φik Φi′
k

ϕil

ϕi′
l




eik.




coll.

(3.12)

and reads

δcollMΦik (pk) =
∑

V a=A,Z,W±

∑
Φi′

k
=H,χ,φ±

µ4−D

×
∫

dDq

(2π)D

ieI V̄
a

Φi′
k
Φik

(q2 −M2
V a)[(pk − q)2 −M2

Φi′
k

]

× lim
qµ→xpµ

k

{
(2pk − q)µG

[V aΦi′
k
]

µ (q, pk − q)

+ 2pµk
∑
l �=k

∑
ϕi′

l

2eplµIV
a

ϕi′
l
ϕil

[(pl + q)2 −M2
ϕi′

l

]

×MΦi′
k
ϕi′

l (pk, pl)
}
. (3.13)

According to the definition (3.10), we have

G
[V aΦi]
µ (q, p− q) =

Φi(p− q)

V a
µ (q)

−
∑
Φj

Φi(p− q) Φj(p)

V a
µ (q)

−
∑
V c

Φi(p− q) V c(p)

V a
µ (q)

. (3.14)

Note that the subtracted contributions, when inserted in
(3.12), correspond to external scalar self-energies (ΦΦ) and
scalar–vector mixing-energies (ΦV ).

We first concentrate on the expression between the
curly brackets in (3.13), which has to be evaluated in the
collinear limit qµ → xpµk . Using
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lim
qµ→xpµ

k

2pkpl
[(pl + q)2 −M2

ϕi′
l

]
=

1
x

+O
(
M2

s

)
(3.15)

and pµk → qµ/x, one finds2

lim
qµ→xpµ

k

{. . .}

= lim
qµ→xpµ

k



(

2
x
− 1
)
qµG

[V aΦi′
k
]

µ (q, pk − q)

+
2e
x

∑
l �=k

∑
ϕi′

l

IV
a

ϕi′
l
ϕil

MΦi′
k
ϕi′

l (pk, pl)


 . (3.16)

With the collinear Ward identity (4.29) for scalar bosons
(ϕi = Φi), this becomes

lim
qµ→xpµ

k

{. . .} = −e
∑
Φi′′

k

IV
a

Φi′′
k
Φi′

k

MΦi′′
k (pk)

+
2e
x



∑
Φi′′

k

IV
a

Φi′′
k
Φi′

k

MΦi′′
k (pk)

+
∑
l �=k

∑
ϕi′

l

IV
a

ϕi′
l
ϕil

MΦi′
k
ϕi′

l (pk, pl)


 . (3.17)

We now use global SU(2) × U(1) invariance, which leads
to

ie
n∑
k=1

∑
ϕi′

k

IV
a

ϕi′
k
ϕik

Mϕi1 ...ϕi′
k
...ϕin

= O
(
M2

s
Mϕi1 ...ϕik

...ϕin

)
(3.18)

for non-mass-suppressed matrix elements. With this, the
part proportional to 1/x is mass-suppressed as expected,
since the soft-photon contributions have been subtracted.
Thus, (3.13) turns into

δcollMΦik (pk) =
∑

V a,Φi′
k
,Φi′′

k

µ4−D (3.19)

×
∫

dDq

(2π)D

−ie2IV
a

Φi′′
k
Φi′

k

I V̄
a

Φi′
k
Φik

(q2 −M2
V a)[(pk − q)2 −M2

Φi′
k

]
MΦi′′

k (pk),

and with (3.5) and MΦi′
k

∼ MW we obtain the collinear
factor

δcoll
Φi′′Φi

LA=
α

4π
δΦi′′ΦiC

ew
Φ log

µ2

M2
W

(3.20)

in LA. For external Higgs bosons, this has to be combined
with the Higgs FRC [7] as in (2.4). The resulting collinear
correction factor reads

δC
HH =

α

4π

[
2Cew

Φ − 3
4sW

2

m2
t

M2
W

]
log

s

M2
W

, (3.21)

2 Since the soft-photon contributions are subtracted, we do
not need a regularization of 1/x for x → 0

where sW represents the sine of the weak mixing angle.
The collinear correction factors for external longitudinal
gauge bosons are obtained from (3.20) and from the cor-
rections to the equivalence theorem [7], and read

δC
V b′′
L V b

L
= δV b′′V b

α

4π

{[
2Cew

Φ − 3
4sW

2

m2
t

M2
W

]

× log
s

M2
W

+ Q2
V b log

M2
W

λ2

}
. (3.22)

As pointed out in [7], Higgs bosons and longitudinal gauge
bosons receive the same collinear SL corrections. The dif-
ference between (3.21) and (3.22) consists only in an elec-
tromagnetic soft contribution, which is contained in the
FRC for charged gauge bosons and depends on the in-
finitesimal photon mass λ. This suggests that the loga-
rithmic corrections for longitudinal gauge bosons can be
reproduced in the symmetric approach. In fact, the result
(3.22) is equivalent to

δC
V b′
L V b

L

LA=
(

1
2
δZΦb′Φb

+ δcoll
Φb′Φb

)∣∣∣∣
µ2=s

, (3.23)

if a FRC for on-shell would-be Goldstone bosons

δZΦb′Φb
= −

(
∂

∂p2
ΣΦb′Φb

(p2)
)∣∣∣∣

p2=M2
V b

, (3.24)

is used where, however, the contributions from Lv have
to be omitted. Note that (3.23) corresponds to the colli-
near factor for physical scalar bosons belonging to a Higgs
doublet with vanishing vev. This result can be interpreted
as follows: as far as logarithmic one-loop corrections are
concerned, at high energies the longitudinal gauge bosons
can be described by would-be Goldstone bosons as phys-
ical scalar bosons. This justifies the symmetric approach
at the one-loop leading-logarithmic level.

3.2 Factorization for transverse gauge bosons

Next, we consider the collinear enhancements generated
by the virtual splittings

V bk
ν (pk) → V a

µ (q)V b′k
ν′ (pk − q), (3.25)

where an incoming on-shell transverse gauge boson V bk

T =
AT, ZT,W

±
T emits a virtual collinear gauge boson V a =

A,Z,W±. The corresponding amplitude is given by

δcollMV
bk
T (pk) =

=
1
2

∑
V a,V b′

k







V a

V b′k
V

bk
T




trunc.
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−
∑
l �=k

∑
ϕi′

l




V b′k

ϕi′
l

V a

V
bk
T

ϕil

+

V a

ϕi′
l

V b′
k

V
bk
T

ϕil




eik.




coll.

. (3.26)

The r.h.s. of (3.26) is manifestly symmetric with respect
to an interchange of the gauge bosons V a and V b′k result-
ing from the splitting (3.25). In particular, the subtracted
eikonal contributions are decomposed into terms originat-
ing from soft V a bosons (qµ → 0) as well as from soft V b′k

bosons (qµ → pµk). The symmetry factor 1/2 compensates
double counting in the sum over V a, V b′k = A,Z,W±. The
resulting amplitude is

δcollMV
bk
T (pk) =

1
2

∑
V a,V b′

k

µ4−D

×
∫

dDq

(2π)D
ieI V̄

a

V b′
kV bk

(q2 −M2
V a)[(pk − q)2 −M2

V b′
k
]

× lim
qµ→xpµ

k

εTν(pk)


Fµνν′

(q, pk − q)

×G
[V aV b′k ]
µν′ (q, pk − q)

+
∑
l �=k

∑
ϕi′

l


Fµνν′

(0, pk)
2eplµIV

a

ϕi′
l
ϕil

[(pl + q)2 −M2
ϕi′

l

]

×G
V b′kϕ

i′
l

ν′ (pk, pl)

+Fµνν′
(pk, 0)

2eplν′IV
b′k

ϕi′
l
ϕil

[(pl + pk − q)2 −M2
ϕi′

l

]

× G
V aϕ

i′
l

µ (pk, pl)


 vϕil

(pl)


 , (3.27)

where

Fµνν′
(q, pk − q) =

[
gνν

′
(2pk − q)µ + gν

′µ(2q − pk)ν

−gµν(pk + q)ν
′]

(3.28)

is the vertex function associated to the splitting (3.25).
According to the definition (3.10),

G[V aV b]
µν (q, p− q) =

V b
ν (p− q)

V a
µ (q)

−
∑
V c

V b
ν (p− q) V c(p)

V a
µ (q)

−
∑
Φj

V b
ν (p− q) Φj(p)

V a
µ (q)

. (3.29)

We first concentrate on the contraction of the vertex
(3.28) with the transverse polarization vector ενT(pk). Ow-
ing to pνkεTν(pk) = 0, the second term on the r.h.s. of
(3.28) vanishes in the collinear limit qµ → xpµk , and

lim
qµ→xpµ

k

εTν(pk)Fµνν′
(q, pk − q) (3.30)

=
(

2
x
− 1
)
εν

′
T (pk)qµ −

(
2

1− x
− 1
)
εµT(pk)(pk − q)ν

′
.

In the fractions 2/x and 2/(1 − x) we have isolated the
terms leading to IR enhancements at x → 0 and x → 1,
respectively. These must be cancelled by the subtracted
eikonal contributions, i.e. the terms in the last four lines
in (3.27). In these contributions some terms are mass-
suppressed or vanishing owing to the following identities
for the massive or massless on-shell gauge bosons V b′k and
V a, respectively,

εµT(pk)plµpν
′
k G

V b′kϕ
i′
l

ν′ (pk, pl) ∼ M
V b′

k
MV

b′k
L ϕi′

l (pk, pl),

εν
′

T (pk)plν′pµkG
V aϕ

i′
l

µ (pk, pl) ∼ MV aMV a
L ϕi′

l (pk, pl).
(3.31)

Thus, the relevant terms are obtained by the substitutions

εTν(pk)Fµνν′
(0, pk) → 2εν

′
T (pk)p

µ
k ,

εTν(pk)Fµνν′
(pk, 0) → −2εµT(pk)pν

′
k (3.32)

in (3.27). With (3.30) and (3.32), the expression between
the curly brackets on the r.h.s. of (3.27) gives

lim
qµ→xpµ

k

{. . .}

= lim
qµ→xpµ

k

{[(
2
x
− 1
)
εν

′
T (pk)qµ −

(
2

1 − x
− 1
)

× εµT(pk)(p− q)ν
′]

G
[V aV b′k ]
µν′ (q, pk − q)
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+
∑
l �=k

∑
ϕi′

l

[
2e
x
IV

a

ϕi′
l
ϕil

MV
b′k
T ϕi′

l (pk, pl)

− 2e
1− x

IV
b′k

ϕi′
l
ϕil

MV a
Tϕi′

l (pk, pl)
]}

. (3.33)

Using the collinear Ward identity (4.29) for gauge bosons
(ϕi = V b

ν ) and the equivalent identity

lim
qµ→xpµ

εµT(p)(p− q)νG[V aV b]O
µν (q, p− q, r)

= e
∑
V b′

MV b′
T O(p, r)IV

b

V b′V a , (3.34)

(3.33) simplifies into

lim
qµ→xpµ

k

{. . .} = −e
∑
V b′′

k

[
IV

a

V b′′
k V b′

k
− IV

b′k
V b′′

k V a

]
MV

b′′k
T (pk)

+
2e
x


∑
V b′′

k

IV
a

V b′′
k V b′

k
MV

b′′k
T (pk)

+
∑
l �=k

∑
ϕi′

l

IV
a

ϕi′
l
ϕil

MV
b′k
T ϕi′

l (pk, pl)




− 2e
1 − x


∑
V b′′

k

IV
b′k

V b′′
k V a

MV
b′′k
T (pk)

+
∑
l �=k

∑
ϕi′

l

IV
b′k

ϕi′
l
ϕil

MV a
Tϕi′

l (pk, pl)


 . (3.35)

Again, the soft terms proportional to 1/x and 1/(1 − x)
are mass-suppressed owing to global SU(2)×U(1) invari-
ance (3.18), so that only the first term in (3.35) remains.
Inserting this into (3.27) with IV

b

V cV a = −IV
a

V cV b , we find

δcollMV
bk
T (pk) =

∑
V a,V b′

k ,V b′′
k

µ4−D (3.36)

×
∫

dDq

(2π)D
−ie2IV

a

V b′′
k V b′

k
I V̄

a

V b′
kV bk

(q2 −M2
V a)[(pk − q)2 −M2

V b′
k
]
MV

b′′
k

T (pk).

With (3.5) we obtain the collinear factor

δcoll

V
b′′
k

T V
bk
T

LA=
α

4π
Cew

V b′′
k V bk

log
µ2

M2
W

(3.37)

in LA. The complete SL collinear (and soft) correction fac-
tors for transverse gauge bosons are obtained by including
the corresponding FRC’s given in [7] and read

δC
V a
TV

b
T

=
α

4π

{
1
2

[bewV aV b + EV aV bbewAZ ] log
s

M2
W

+δV aV bQ2
V a log

M2
W

λ2

}

−1
2
δV aAδV bA∆α(M2

W ). (3.38)

The s-dependent part is determined by the one-loop coef-
ficients bewV aV b of the electroweak β-function (see [7]). Fur-
thermore, EV aV b is an antisymmetric matrix with non-
vanishing components EAZ = −EZA = 1. The remain-
ing terms represent a soft contribution proportional to
the charge of the gauge boson and a pure electromagnetic
contribution originating from light-fermion loops that can
be related to the running of the electromagnetic coupling
from zero to the scale MW (defined explicitly in [7]).

3.3 Factorization for fermions

We finally consider the collinear enhancements generated
by the virtual splittings

fκj,σ(pk) → V a
µ (q)fκj′,σ′(pk − q), (3.39)

where a virtual collinear gauge boson V a = A,Z,W± is
emitted by an incoming on-shell fermion fκj,σ, i.e. a quark
or lepton f = Q,L, with chirality κ = L,R, isospin index
σ = ±, and generation index j = 1, 2, 3. The collinear
singularity is contained in

δcollMfκ
j,σ (pk)

=
∑
V a

∑
j′σ′







V a

Ψj,σ

Ψj′,σ′




trunc.

−
∑
l �=k

∑
ϕi′

l




V a

Ψj,σ

ϕil

Ψj′,σ′

ϕi′
l




eik.




coll.

.

(3.40)

The corresponding amplitude reads

δcollMfκ
j,σ (pk) =

∑
V a=A,Z,W±

∑
j′,σ′

µ4−D

×
∫

dDq

(2π)D
ieI V̄

a

σ′σU
V̄ a

j′j

(q2 −M2
V a)[(pk − q)2 −m2

fj′,σ′ ]

× lim
qµ→xpµ

k

{[
G

[V aΨκ
j′,σ′ ]

µ (q, pk − q)(p/k − q/)

+
∑
l �=k

∑
ϕi′

l

2eplµIV
a

ϕi′
l
ϕil

[(pl + q)2 −M2
ϕi′

l

]

×G
Ψκ

j′,σ′ϕi′
l (pk, pl)vϕil

(pl) p/k

]
γµu(pk)

}
, (3.41)

where the fermion-mass terms in the numerator have been
neglected, and the unitary mixing matrix UV a

is defined
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in (B.8). According to the definition (3.10) the Green func-

tion G
[V aΨκ

j,σ ]
µ is diagrammatically given by

G
[V aΨκ

j,σ ]
µ (q, p− q) =

Ψκ
j,σ(p − q)

V a
µ (q)

−
∑
Ψ

Ψκ
j,σ(p− q) Ψ(p)

V a
µ (q)

. (3.42)

In the collinear limit, the expression between the curly
brackets in (3.41) can be simplified using (3.15),

lim
qµ→xpµ

k

(p/k − q/)γµu(pk)

=
(

2
x
− 2
)
qµu(pk) +O(mj,σ)u(pk), (3.43)

and the collinear Ward identity (4.31). One obtains

lim
qµ→xpµ

k

{. . .}

= lim
qµ→xpµ

k

(
2
x
− 2
)
qµG

[V aΨκ
j′,σ′ ]

µ (q, pk − q)u(pk)

+
2e
x

∑
l �=k

∑
ϕi′

l

IV
a

ϕi′
l
ϕil

Mfκ
j′,σ′ϕi′

l (pk, pl)

= −2e
∑
j′′,σ′′

IV
a

σ′′σ′UV a

j′′j′Mfκ
j′′,σ′′ (pk)

+
2e
x



∑
j′′,σ′′

IV
a

σ′′σ′UV a

j′′j′Mfκ
j′′,σ′′ (pk)

+
∑
l �=k

∑
ϕi′

l

IV
a

ϕi′
l
ϕil

Mfκ
j′,σ′ϕi′

l (pk, pl)


 . (3.44)

Again, the soft-photon contributions proportional to
1/x are mass-suppressed owing to global gauge invariance
(3.18). Thus, only the part originating from the q/ term in
(3.41) contributes, and we find

δcollMfκ
j,σ(pk) =

∑
V a,j′,j′′,σ′,σ′′

µ4−D
∫

dDq

(2π)D
(3.45)

× −2ie2IV
a

σ′′σ′UV a

j′′j′I
V̄ a

σ′σU
V̄ a

j′j

(q2 −M2
V a)[(pk − q)2 −m2

fj′,σ′ ]
Mfκ

j′′,σ′′ (pk).

Using (3.5), and the unitarity of the mixing matrix,∑
j′ U

V a

j′′j′U
V̄ a

j′j = δj′′j , the mixing matrix drops out, and
we obtain the collinear factor in LA,

δcoll
fκ

j′′,σ′′fκ
j,σ

LA= δj′′jδσ′′σ
α

2π

×
{
Cew
fκ

σ
log

µ2

M2
W

+ Q2
fj,σ

log
M2

W

m2
fj,σ

}
. (3.46)

Adding the FRC for fermions [7], we obtain the SL colli-
near (and soft) corrections

δC
fκ

j′′,σ′′fκ
j,σ

= δjj′′δσσ′′
α

4π

{[
3
2
Cew
fκ

σ
− 1

8sW
2

(
(1 + δκR)

m2
fj,σ

M2
W

+δκL

m2
fj,−σ

M2
W

)]
log

s

M2
W

+Q2
fj,σ

[
1
2

log
M2

W

m2
fj,σ

+ log
M2

W

λ2

]}
. (3.47)

The Yukawa contributions are large only for external
heavy quarks fκj,σ = tR, tL, and bL. In contrast to the
m2
t corrections to the ρ parameter, which are only related

to the (virtual) left-handed (t, b) doublet, logarithmic Yu-
kawa contributions appear also for (external) right-handed
top quarks.

4 Collinear Ward identities

As we have already stressed in Sect. 3, the proof of the fac-
torization identities (3.2) is based on the collinear Ward
identities (3.4). In the compact notation introduced in
(3.7) and (3.10), these Ward identities read

lim
qµ→xpµ

qµvϕ(p)G
[V aϕ

i
]O

µ (q, p− q, r)

= e
∑
ϕi′

Mϕi′O(p, r)IV
a

ϕ′
iϕi

, (4.1)

A detailed derivation of these identities is presented in
Sect. 4.1, for external scalars (ϕi = Φi) and gauge bosons
(ϕi = V a) and in Sect. 4.2 for fermions (ϕi = Ψκ

j,σ). Here
we discuss the most important features and restrictions
concerning the Ward identities (4.1):

(1) They are restricted to LO matrix elements. We stress
that all equations used in this section are only valid
in LO.

(2) They are realized in the high-energy limit (2.2), and
in the limit of collinear gauge boson momenta q and
quasi-on-shell external momenta p, i.e. in the limit
where 0 < p2, (p − q)2 � s. All these limits have
to be taken simultaneously. The wave function vϕ(p)
corresponds to a particle with mass (p2)1/2.

(3) They are valid only up to mass-suppressed terms, to
be precise terms of the order M/s1/2 (for fermions) or
M2/s (for bosons) with respect to the leading terms
appearing in (4.1), where M2 ∼ max(p2,M2

ϕi
,M2

V a).
Furthermore, they apply only to matrix elements that
are not mass-suppressed. In other words, they apply
to those matrix elements that arise from Lsymm in LO.

(4) Their derivation is based on the BRS invariance of a
spontaneously broken gauge theory (see Appendix B).
In particular, we used only the generic form of the
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BRS transformations of the fields, the form of the
gauge-fixing term in an arbitrary ‘t Hooft gauge,
(B.10), and the corresponding form of the tree-level
propagators. Therefore, the result is valid for a gen-
eral spontaneously broken gauge theory, in an arbi-
trary ‘t Hooft gauge.

It is important to observe that the identities (4.1) do
not reflect the presence of the non-vanishing vev of the
Higgs doublet. In fact, they are identical to the identities
obtained within a symmetric gauge theory with massless
gauge bosons. However, spontaneous symmetry breaking
plays a non-trivial role in ensuring the validity of (4.1).
It guarantees the cancellation of mixing terms between
gauge bosons and would-be Goldstone bosons. In particu-
lar, we stress the following: extra contributions originating
from Lv cannot be excluded a priori in (4.1). In fact, the
corresponding mass-suppressed couplings can in principle
give extra leading contributions if they are enhanced by
propagators with small invariants. We show that no such
extra terms are left in the final result. Such terms appear,
however, in the derivation of the Ward identity for exter-
nal would-be Goldstone bosons (ϕi = Φi) as “extra con-
tributions” involving gauge bosons (ϕi′ = V a), and in the
derivation of the Ward identity for external gauge bosons
(ϕi = V a) as “extra contributions” involving would-be
Goldstone bosons (ϕi′ = Φi) [see (4.13)]. Their cancel-
lation is ensured by Ward identities (4.18) relating the
electroweak vertex functions that involve explicit factors
with mass dimension. In other words, the validity of (4.1)
within a spontaneously broken gauge theory is a non-trivial
consequence of the symmetry of the full theory.

In the following, the collinear Ward identities are de-
rived for matrix elements involving the physical fields of
the electroweak theory.

4.1 Scalar bosons and transverse gauge bosons

The Ward identities for external scalar bosons Φi = H,χ,
φ± and transverse gauge bosons V b = A,Z,W± are of
the same form. Here we derive a generic Ward identity
for external bosonic fields ϕi valid for ϕi = Φi as well as
ϕi = V b

µ . In both cases mixing between would-be Gold-
stone bosons and gauge bosons has to be taken into ac-
count3. Therefore, we use the symbol ϕ̃ to denote the mix-
ing partner of ϕ, i.e. we have (ϕ, ϕ̃) = (Φ, V ) or (ϕ, ϕ̃) =
(V, Φ). The resulting Ward identities read

lim
qµ→xpµ

qµ ×




ϕi(p− q)

V a
µ (q)

3 For external Higgs bosons or photons all mixing terms van-
ish

−
∑
ϕi′

ϕi(p− q) ϕi′ (p)

V a
µ (q)

−
∑
ϕ̃j

ϕi(p− q) ϕ̃j(p)

V a
µ (q)




=

= e
∑
ϕi′

IV
a

ϕi′ϕi

ϕi′(p)
+O (M2Ed−2

)
,

(4.2)

where M2 ∼ max(p2,M2
ϕi
,M2

V a), and d is the mass di-
mension of the matrix element Mϕi . The diagrammatic
representation corresponds to external scalars (ϕ = Φ).
For the proof of (4.2), we start from the BRS invariance
(cf. AppendixB) of the Green function 〈ūa(x)ϕ+

i (y)O(z)〉:
〈[sūa(x)]ϕ+

i (y)O(z)〉 − 〈ūa(x)[sϕ+
i (y)]O(z)〉

= 〈ūa(x)ϕ+
i (y)[sO(z)]〉. (4.3)

With the BRS variations (B.15) and (B.13) this yields

1
ξa

∂µx 〈V̄ a
µ (x)ϕ+

i (y)O(z)〉

− iev
∑

Φj=H,χ,φ±
IV

a

HΦj
〈Φj(x)ϕ+

i (y)O(z)〉

+
∑

V b=A,Z,W±

[
XV b

ϕ+
i

〈ūa(x)ub(y)O(z)〉

−ie
∑
ϕi′

〈ūa(x)ub(y)ϕ+
i′ (y)O(z)〉IV b

ϕi′ϕi

]

= −〈ūa(x)ϕ+
i (y)[sO(z)]〉. (4.4)

Fourier transformation of the variables (x, y, z) to the in-
coming momenta (q, p− q, r) (∂µx → iqµ) gives

i
ξa

qµ〈V̄ a
µ (q)ϕ+

i (p− q)O(r)〉

− iev
∑
Φj

IV
a

HΦj
〈Φj(q)ϕ+

i (p− q)O(r)〉

+
∑
V b

XV b

ϕ+
i

〈ūa(q)ub(p− q)O(r)〉 − ie
∑
V b,ϕi′

IV
b

ϕi′ϕi

×
∫

dDl

(2π)D
〈ūa(q)ub(l)ϕ+

i′ (p− q − l)O(r)〉

= −〈ūa(q)ϕ+
i (p− q)[sO(r)]〉. (4.5)
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From now on, the r.h.s. is omitted, since the BRS varia-
tion of on-shell physical fields does not contribute to phys-
ical matrix elements. This can be verified by truncation of
the physical external legs O(r) and contraction with the
wave functions. A further simplification concerns the last
term on the l.h.s. of (4.5). This originates from the BRS
variation sϕ+

i (y) of the external scalar or vector field and
contains an external “BRS vertex” connecting the fields
ub(y)ϕ+

i′ (y), which we represent by a small box in (4.6).
When we restrict the relation to LO connected Green func-
tions, this term simplifies into those tree diagrams where
the external ghost line is not connected to the scalar leg
of the BRS vertex by internal vertices,

sϕ+
i (p− q)

ūa(q)

=
ϕ+

i′ (p)

ūa(q)

O

+
∑
O1 �=O

ϕ+
i′(p+ r2)

ūa(q)

O1

O2

. (4.6)

We will see in the following that the relevant contribu-
tions result only from the first diagram on the r.h.s. of
(4.6), where the ghosts are joined by a propagator and
all on-shell legs O(r) are connected to the leg ϕ+

i′ , which
receives momentum p = −r. In the remaining diagrams,
the on-shell legs are distributed into two subsets O(r) =
O1(r1)O2(r2) with momenta r1 + r2 = r. One subset
O1 interacts with the leg ϕ+

i′ , which receives momentum
p+r2 = −r1. The other subset O2 interacts with the ghost
line. Therefore, in LO the last term on the l.h.s. of (4.5)
yields

−ie
∑
V b,ϕi′

IV
b

ϕi′ϕi

∫
dDl

(2π)D
〈ūa(q)ub(l)ϕ+

i′ (p− q − l)O(r)〉

= −ie
∑
ϕi′

〈ūa(q)ua(−q)〉〈ϕ+
i′ (p)O(r)〉IV a

ϕi′ϕi

− ie
∑
V b,ϕi′

∑
O1 �=O

〈ūa(q)ub(−q − r2)O2(r2)〉

×〈ϕ+
i′ (p + r2)O1(r1)〉IV b

ϕi′ϕi
, (4.7)

and if we split off the momentum-conservation δ-functions,
(4.5) becomes

i
ξa

qµG
V̄ aϕ+

i O
µ (q, p− q, r)

−iev
∑
Φj

IV
a

HΦj
GΦjϕ

+
i O(q, p− q, r)

+
∑
V b

XV b

ϕ+
i

GūaubO(q, p− q, r)

−ie
∑
ϕi′

Gūaua

(q)Gϕ+
i′O(p, r)IV

a

ϕi′ϕi

= ie
∑
V b,ϕi′

∑
O1 �=O

Gϕ+
i′O1(p + r2, r1)IV

b

ϕi′ϕi

×GūaubO2(q,−q − r2, r2). (4.8)

Recall that we are interested in the on-shell and “mass-
less” limit p2 � s of the above equation. Therefore, we
have to take special care of all terms that are enhanced in
this limit, like internal propagators carrying momentum p.
Since internal lines with small invariants do not occur on
the r.h.s. of (4.8), we now concentrate on the l.h.s. Using
(3.10), the first term can be written as

G
V̄ aϕ+

i O
µ (q, p− q, r) = G

[V̄ aϕ+
i ]O

µ (q, p− q, r)

+
∑
ϕi′

G
V̄ aϕ+

i ϕi′
µ (q, p− q,−p)Gϕ

i′O(p, r)

+
∑
ϕ̃j

G
V̄ aϕ+

i ϕ̃j
µ (q, p− q,−p)Gϕ̃

j
O(p, r), (4.9)

where for scalar ϕ+
i the sums run over scalar ϕi′ and vec-

tor ϕ̃j and vice versa if ϕ+
i is a vector. In this way the

enhanced internal propagators with momentum p are iso-

lated in the terms G
V̄ aϕ+

i ϕi′
µ (q, p − q,−p) and G

V̄ aϕ+
i ϕ̃j

µ

(q, p − q,−p), whereas the subtracted Green functions

G
[V̄ aϕ+

i ]O
µ contain no enhancement by definition. A sim-

ilar decomposition is used for the second and third term
on the l.h.s. of (4.8), whereas the enhanced propagator
contained in the last term is isolated by writing

Gϕ+
i′O(p, r) = Gϕ+

i′ϕi′ (p)Gϕ
i′O(p, r). (4.10)

In this way, the l.h.s. of (4.8) can be written as

i
ξa

qµG
[V̄ aϕ+

i ]O
µ (q, p− q, r)

− iev
∑
Φj

IV
a

HΦj
G[Φjϕ

+
i ]O(q, p− q, r)

+
∑
V b

XV b

ϕ+
i

G[ūaub]O(q, p− q, r) (4.11)

+
∑
ϕi′

SV̄
a

ϕ+
i ϕi′

Gϕ
i′O(p, r) +

∑
ϕ̃j

M V̄ a

ϕ+
i ϕ̃j

G
ϕ̃

j
O(p, r),

where all enhanced terms are in the self-energy-like (ϕϕ)
contributions

SV̄
a

ϕ+
i ϕi′

=
i
ξa

qµG
V̄ aϕ+

i ϕi′
µ (q, p− q,−p)

− iev
∑
Φk

IV
a

HΦk
GΦkϕ

+
i ϕi′ (q, p− q,−p)

+
∑
V b

XV b

ϕ+
i

Gūaubϕi′ (q, p− q,−p)

− ieGūaua

(q)Gϕ+
i′ϕi′ (p)IV

a

ϕi′ϕi
(4.12)

and in the mixing-energy-like (ϕϕ̃) contributions

M V̄ a

ϕ+
i ϕ̃j

=
i
ξa

qµG
V̄ aϕ+

i ϕ̃j
µ (q, p− q,−p)
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− iev
∑
Φk

IV
a

HΦk
GΦkϕ

+
i ϕ̃j(q, p− q,−p)

+
∑
V b

XV b

ϕ+
i

Gūaubϕ̃j (q, p− q,−p). (4.13)

Note that here the terms originating from Lv, i.e. terms
proportional to the vev, are enhanced by the internal ϕ̃j
propagators and represent leading contributions to (4.11).
In order to simplify (4.12) and (4.13), and to check
whether contributions proportional to the vev survive, we
have to derive two further Ward identities.
(1) For the self-energy-like contributions (4.12) we exploit
the BRS invariance of the Green function 〈ūa(x)ϕ+

i (y)
ϕi′ (z)〉:

〈[sūa(x)]ϕ+
i (y)ϕi′ (z)〉 − 〈ūa(x)[sϕ+

i (y)]ϕi′ (z)〉
= 〈ūa(x)ϕ+

i (y)[sϕi′ (z)]〉. (4.14)

Using the BRS variations (B.15), (B.13), and (B.12), we
have

1
ξa

∂µx 〈V̄ a
µ (x)ϕ+

i (y)ϕi′(z)〉

− iev
∑
Φj

IV
a

HΦj
〈Φj(x)ϕ+

i (y)ϕi′ (z)〉

+
∑
V b

XV b

ϕ+
i

〈ūa(x)ub(y)ϕi′ (z)〉

− ie
∑
V b,ϕk

〈ūa(x)ub(y)ϕ+
k (y)ϕi′ (z)〉IV b

ϕkϕi

= −
∑
V b

XV b

ϕi′ 〈ūa(x)ϕ+
i (y)ub(z)〉 (4.15)

− ie
∑
V b,ϕk

IV
b

ϕi′ϕk
〈ūa(x)ϕ+

i (y)ub(z)ϕk(z)〉.

In LO, the terms involving four fields reduce to products
of pairs of propagators. After Fourier transformation we
obtain

i
ξa

qµ〈V̄ a
µ (q)ϕ+

i (p− q)ϕi′ (−p)〉

− iev
∑
Φj

IV
a

HΦj
〈Φj(q)ϕ+

i (p− q)ϕi′ (−p)〉

+
∑
V b

XV b

ϕ+
i

〈ūa(q)ub(p− q)ϕi′ (−p)〉

− ie〈ūa(q)ua(−q)〉〈ϕ+
i′ (p)ϕi′ (−p)〉IV a

ϕi′ϕi

= −
∑
V b

XV b

ϕi′ 〈ūa(q)ϕ+
i (p− q)ub(−p)〉

− ie〈ūa(q)ua(−q)〉
× 〈ϕ+

i (p− q)ϕi(−p + q)〉IV a

ϕi′ϕi
, (4.16)

and we easily see that

SV̄
a

ϕ+
i ϕi′

= −
∑
V b

XV b

ϕi′G
ūaϕ+

i u
b

(q, p− q,−p)

− ieGūaua

(q)Gϕ+
i ϕi(p− q)IV

a

ϕi′ϕi
. (4.17)

(2) For the mixing-energy-like contributions (4.13) we use
the BRS invariance of the Green function 〈ūa(x)ϕ+

i (y)
ϕ̃j(z)〉. The resulting WI is obtained from (4.16) by substi-
tuting ϕi′ → ϕ̃j and by neglecting the mixing propagators
〈ϕ+

i (p)ϕ̃j(−p)〉 which vanish in LO and reads

i
ξa

qµ〈V̄ a
µ (q)ϕ+

i (p− q)ϕ̃j(−p)〉

− iev
∑
Φk

IV
a

HΦk
〈Φk(q)ϕ+

i (p− q)ϕ̃j(−p)〉

+
∑
V b

XV b

ϕ+
i

〈ūa(q)ub(p− q)ϕ̃j(−p)〉

= −
∑
V b

XV b

ϕ̃j
〈ūa(q)ϕ+

i (p− q)ub(−p)〉. (4.18)

This relation involves the V V Φ couplings as well as other
terms originating from Lv, and leads to

M V̄ a

ϕ+
i ϕ̃j

= −
∑
V b

XV b

ϕ̃j
Gūaϕ+

i u
b

(q, p− q,−p). (4.19)

Both (4.17) and (4.19) contain the ghost vertex func-
tion Gūaϕ+

i u
b

, but when we combine them in (4.11) these
ghost contributions cancel owing to the LO identity that
relates external would-be Goldstone bosons and gauge
bosons,
∑
V d

GV dO
µ (p, r)XV b

V d
µ

+
∑
Φj

GΦjO(p, r)XV b

Φj




×Gūaϕ+
i u

b

(q, p− q,−p)

=


−ipµGV bO

µ (p, r) + iev
∑
Φj

IV
b

ΦjHGΦjO(p, r)




×Gūaϕ+
i u

b

(q, p− q,−p) = 0. (4.20)

Thus, all mixing terms cancel, and the complete identity
(4.8) becomes

i
ξa

qµG
[V̄ aϕ+

i ]O
µ (q, p− q, r)

−iev
∑
Φj

IV
a

HΦj
G[Φjϕ

+
i ]O(q, p− q, r)

+
∑
V b

XV b

ϕ+
i

G[ūaub]O(q, p− q, r)

− ieGūaua

(q)Gϕ+
i ϕi(p− q)

∑
ϕi′

Gϕ
i′O(p, r)IV

a

ϕi′ϕi

= ie
∑
V b,ϕi′

∑
O1 �=O

Gϕ+
i′O1(p + r2, r1)IV

b

ϕi′ϕi

×GūaubO2(q,−q − r2, r2). (4.21)

Now we can truncate the two remaining external legs. To
this end we observe that (see AppendixC) the longitudinal
part of the LO gauge-boson propagator GV aV̄ a

L (q), the LO
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ghost propagator, and the LO propagator of the associated
would-be Goldstone boson Φj are related by

1
ξa

GV aV̄ a

L (q) = Gūaua

(q) = −GΦ+
j Φj (q). (4.22)

Using this relation, the leg with momentum q is eas-
ily truncated by multiplying the above identity with the
longitudinal part of the inverse gauge-boson propagator
−iξaΓ V aV̄ a

L (q). The leg with momentum p − q is trun-
cated by multiplying (4.21) by the inverse (scalar-boson
or gauge-boson) propagator −iΓϕiϕ

+
i (p− q), and by using

XV b

ϕ+
i

Gubūb

(p− q) = cϕiG
ϕ+

i ϕi(p− q)XV b

ϕ+
i

(4.23)

with cΦi = 1 and cV b = −1/ξb. The truncated identity
reads

iqµG
[V aϕ

i
]O

µ (q, p− q, r)

+ iev
∑
Φj

IV
a

HΦj
G[Φ+

j ϕi
]O(q, p− q, r)

+
∑
V b

cϕiX
V b

ϕ+
i

G[uaūb]O(q, p− q, r)

− ie
∑
ϕi′

Gϕ
i′O(p, r)IV

a

ϕi′ϕi

= e
∑
V b,ϕi′

∑
O1 �=O

[
Γϕiϕ

+
i (p− q)Gϕ+

i′O1(−r1, r1)
]

× IV
b

ϕi′ϕi
GuaubO2(q,−q − r2, r2). (4.24)

Now we contract with the wave function vϕ(p) of an on-
shell external state with mass (p2)1/2. For scalar bosons
the wave function is trivial (vΦ(p) = 1), whereas for ex-
ternal gauge bosons we consider transverse polarizations
vVν (p) = ενT(p). Finally, when we take the collinear limit
qµ → xpµ and assume

M2 ∼ max(p2,M2
ϕi
,M2

V a) � s, (4.25)

various terms in (4.24) are mass-suppressed. The r.h.s. is
mass-suppressed owing to

lim
qµ→xpµ

vϕ(p)Γϕiϕ
+
i (p− q)Gϕ+

i′ϕi′ (−r1)

∼ lim
qµ→xpµ

(p− q)2 −M2
ϕi

r2
1

= O
(
M2

s

)
, (4.26)

since r1 is a non-trivial combination of the external mo-
menta, and like for all invariants we assume that r2

1 ∼ s,
whereas in the collinear limit (p− q)2 −M2

ϕi
∼ M2. The

second term on the l.h.s. of (4.24) is proportional to the
vev and therefore mass-suppressed, and for the third term
we have

lim
qµ→xpµ

vϕ(p)XV b

ϕ+
i

= O(M). (4.27)

For gauge bosons this is due to the transversality of the
polarization vector

lim
qµ→xpµ

(p− q)νενT(p) = 0, (4.28)

whereas for scalar bosons XV b

Φ+
i

is explicitly proportional
to the vev. The remaining leading terms give the result

lim
qµ→xpµ

qµvϕ(p)G
[V aϕ

i
]O

µ (q, p− q, r)

= e
∑
ϕi′

vϕ(p)Gϕ
i′O(p, r)IV

a

ϕi′ϕi
+O

(
M2

s
MϕiO

)

= e
∑
ϕi′

Mϕi′O(p, r)IV
a

ϕi′ϕi
+O

(
M2

s
MϕiO

)
, (4.29)

which is the identity represented in (4.2) in diagrammatic
form. Note that in general the mass of the wave function
vϕ(p) need not be equal to the masses of the fields ϕi or
ϕi′ .

4.2 Fermions

The derivation of the collinear Ward identity for external
fermions ϕi = Ψκ

j,σ is completely analogous to that pre-
sented in the previous section. In fact, it is much simpler
since no mixing contributions (ϕ̃) have to be considered.
The effect of the quark-mixing matrix can be absorbed in
the generalized generators

IV
a

ϕiϕi′ = UV a

jj′ I
V a

σσ′ . (4.30)

The final result reads

lim
qµ→xpµ

qµG
[V aΨκ

j,σ]O
µ (q, p− q, r)u(p) (4.31)

= +e
∑
σ′,j′

Mfκ
j′,σ′O(p, r)IV

a

σ′σU
V a

j′j +O
(

M√
s
Mfκ

j,σO

)
,

for fermions, and

lim
qµ→xpµ

qµv̄(p)G
[V aΨ̄κ

j,σ ]O
µ (q, p− q, r) (4.32)

= −e
∑
σ′,j′

IV
a

σσ′UV a

jj′ Mf̄κ
j′,σ′O(p, r) +O

(
M√
s
Mf̄κ

j,σO

)
,

for antifermions, where

M2 ∼ max (p2,m2
fj,σ

,M2
V a). (4.33)

In the derivation we used

lim
qµ→xpµ

v̄(p)Γ Ψ̄Ψ
j,σ (p− q)GΨΨ̄

j′,σ′(−r1)

∝ Mv̄(p)r/1

r2
1

= O
(

M√
s

)
, (4.34)

which is the analogue of (4.26), and a similar equation for
fermion spinors u(p).
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5 Conclusions

For energies at and beyond 1TeV, the electroweak cor-
rections are dominated by double and single logarithms
involving the ratio of the typical energy of the considered
process to the electroweak scale. For processes that are
not mass-suppressed, the one-loop logarithmic corrections
are universal, i.e. in contrast to the non-logarithmic cor-
rections they can be calculated in a process-independent
way. The corresponding results have already been pub-
lished in [7].

Here we have presented the derivation of the virtual
collinear logarithms at the one-loop level in the electro-
weak standard model for processes that are not mass-sup-
pressed. Using the BRS invariance of the electroweak stan-
dard model, we have proved the factorization of these loga-
rithms in the ’t Hooft–Feynman gauge. The proof has been
performed in the spontaneously broken phase in terms of
the physical fields and parameters. The mixings between
the various fields and all relevant terms proportional to
the vacuum expectation value have been taken into ac-
count. We find that all terms proportional to the vacuum
expectation value cancel and the results are equivalent to
those obtained in the symmetric phase with the longitudi-
nal modes of the gauge bosons replaced by the would-be
Goldstone bosons as physical particles. Thus, this equiva-
lence, which has been assumed in the literature, has been
proven at the one-loop level using the Goldstone-boson
equivalence theorem and the corresponding corrections.
It will be interesting to investigate to what extent this
equivalence is valid at higher orders.

While we have derived the collinear Ward identities
and the collinear logarithms within the electroweak stan-
dard model our method can be generalized to arbitrary
spontaneously broken gauge theories including, in partic-
ular, supersymmetric extensions of the standard model.

Acknowledgements. This work was supported in part by the
Swiss Bundesamt für Bildung und Wissenschaft and by the
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thank Stefan Dittmaier for a careful reading of the manuscript.

Appendix

A Collinear singularity

In this appendix we discuss mass singularities originating
from integrals of the type

I = −i(4π)2µ4−D (A.1)

×
∫

dDq

(2π)D
N(q)

(q2 −M2
0 + iε)[(p− q)2 −M2

1 + iε]
.

We restrict ourselves to purely collinear singularities that
are exclusively related to an external relativistic momen-
tum pµ that has a small square, i.e. p2 � (p0)2 ∼ s.
Singularities originating from other propagators in N(q)
are not considered. In particular, we assume that N(q) is

either not singular in the soft limit qµ → 0 or that the soft
singularities are subtracted.

Our goal is to fix a precise prescription for extract-
ing the part of the function N(q) that enters the mass-
singular part of (A.1). To this end, we introduce a Sudakov
parametrization [15] for the loop momentum

qµ = xpµ + ylµ + qµT, (A.2)

where pµ and the light-like four vector lµ,

pµ = (p0,p), lµ = (p0,−p0p/|p|), (A.3)

describe the component collinear to the external momen-
tum, whereas the space-like vector qµT with

pµq
µ
T = lµq

µ
T = 0, q2

T = −|qT|2 (A.4)

represents the perpendicular component. In this parame-
trization we get

I = −4i(pl)µ4−D
∫

dx
∫

dy
∫

dD−2qT
(2π)D−2

N(q)
(q2 −M2

0 + iε)[(p− q)2 −M2
1 + iε]

. (A.5)

The denominators of the propagators read

q2 −M2
0 + iε = x2p2 + 2xy(pl)

− |qT|2 −M2
0 + iε,

(p− q)2 −M2
1 + iε = (1 − x)2p2 + 2(x− 1)y(pl)

− |qT|2 −M2
1 + iε, (A.6)

and are linear in the variable y owing to l2 = 0. For x �=
0, 1, the integral I can be written as

I = −i
µ4−D

(pl)

∫
dx

x(x − 1)

∫
dD−2qT
(2π)D−2∫

dy
N(x, y, qT)

(y − y0)(y − y1)
, (A.7)

with single poles at

y0 =
|qT|2 − x2p2 + M2

0 − iε
2x(pl)

, x �= 0,

y1 =
|qT|2 − (1 − x)2p2 + M2

1 − iε
2(x− 1)(pl)

, x �= 1. (A.8)

The y integral is non-zero only when the poles lie in op-
posite complex half-planes, i.e. for 0 < x < 1. Then, it
can be performed by closing the contour around one of
the two poles. This yields

I = −µ4−D

(pl)

∫ 1

0

dx
x(x− 1)

∫
dD−2qT
(2π)D−3

N(x, yi, qT)
y0 − y1

= 4πµ4−D
∫ 1

0

dx
∫

dD−2qT
(2π)D−2

N(x, yi, qT)
|qT|2 + ∆(x)

, (A.9)

where in the vicinity of x = 1, 0 the contour has to be
closed around the pole at yi = y0, y1, respectively.
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The transverse momentum integral exhibits a logarith-
mic singularity in the collinear region |qT| → 0, where the
squares of the momenta p and p − q are small compared
to the energy squared p2, (p− q)2 � (pl) ∼ 2p2

0. The sin-
gularity is regulated by the mass terms in

∆(x) = (1− x)M2
0 + xM2

1 − x(1 − x)p2. (A.10)

In leading approximation, we restrict ourselves to log-
arithmic mass-singular contributions in (A.9). Terms of
order |qT|2, p2, M0 or M1 are neglected in N(q). Since
the relevant pole, y0 or y1, is of order |qT|2/(pl), also con-
tributions proportional to y can be discarded. We there-
fore arrive at the following simple recipe for N(q) in the
collinear limit:

(1) Substitute N(x, y, qT) → N(x, 0, 0),
i.e. replace qµ → xpµ. (A.11)

(2) Neglect all mass-suppressed contributions.

Then, performing the qT integration in D − 2 = 2 − 2ε
dimensions and expanding in ε, we obtain the leading con-
tribution

I = Γ (ε)
∫ 1

0

dx
(

4πµ2

∆(x)

)ε
N(x, 0, 0)

=
1
ε

+
∫ 1

0

dx log
(

µ2

∆(x)

)
N(x, 0, 0)

− γ + log 4π +O(ε). (A.12)

Finally, omitting the UV singularity, which cancels in ob-
servables, neglecting constant terms, and performing the
integral, we obtain

I
LA= log

(
µ2

M2

)∫ 1

0

dxN(x, 0, 0), (A.13)

in logarithmic approximation (LA). The scale in the log-
arithm is of the order of the largest mass in (A.10),

M2 ∼ max (p2,M2
0 ,M

2
1 ). (A.14)

B BRS transformations

In this appendix we summarize our conventions for the
gauge-fixing terms and the BRS symmetry of the elec-
troweak standard model. We follow [14] but introduce a
generic notation.

B.1 Gauge symmetry

The classical Lagrangian of the electroweak standard mo-
del is invariant with respect to gauge transformations of
the physical fields (and would-be Goldstone bosons) ϕi,
which can generically be written as

δϕi(x) =
∑

V b=A,Z,W±

[
XV b

ϕi
δθV

b

(x)

+ ie
∑
ϕi′

IV
b

ϕiϕi′ δθ
V b

(x)ϕi′ (x)

]
. (B.1)

The linear operator XV b

ϕi
represents the transformation of

free fields, and the non-linear term contains the SU(2) ×
U(1) generators IV

b

ϕiϕi′ in the representation of the fields
ϕi [7]. For scalar bosons, the linear term in (B.1) is deter-
mined by the contribution of the vev

vi = vδHΦi (B.2)

and reads

XV b

Φi
δθV

b

(x) = ievIV
b

ΦiHδθV
b

(x). (B.3)

For gauge bosons, ϕi = V b = A,Z,W±, we have

XV b

V c
µ
δθV

b

(x) = δV bV c∂µδθ
V b

(x), (B.4)

which in momentum space leads to the simple relation

XV b

V c
µ
δθV

b

(p) = ipµδV bV cδθV
b

(p). (B.5)

For fermions, ϕi = Ψκ
j,σ,

XV b

Ψj,σ
δθV

b

(x) = 0, (B.6)

and the gauge transformation of the physical fields is de-
termined by

IV
a

Ψj,σΨj′,σ,
= UV a

jj′ I
V a

σσ′ , (B.7)

where the generators IV
a

σσ′ depend on the representation of
Ψκ
j,σ and, in particular, on the chirality κ = R,L. The uni-

tary mixing matrix UV a

jj′ is trivial (UV a

jj′ = δjj′ ) everywhere
except for the left-handed quark representation, where it
has the non-trivial components

UW+

jj′ = Vjj′ , UW−
jj′ = V+

jj′ = V∗
j′j , (B.8)

corresponding to the quark-mixing matrix Vjj′ .

B.2 Gauge fixing and BRS invariance

The quantized electroweak Lagrangian includes the gauge-
fixing term

Lfix = −
∑

V a=A,Z,W±

1
2ξa

CV a

CV̄ a

, (B.9)

with the gauge parameters ξA, ξZ , ξ+ = ξ−, and the cor-
responding ghost terms. The charge-conjugate of V is de-
noted V̄ . A general ’t Hooft gauge fixing is given by

CV̄ a{V, Φ, x} = ∂µV̄ a
µ (x) − ievξa

∑
Φi=H,χ,φ±

IV
a

HΦi
Φi(x).

(B.10)

Note that the matrix elements IV
a

HΦi
relate the gauge fields

V a to the associated would-be Goldstone-boson fields Φi.
In fact, the single components of (B.10) read

CA(x) = ∂µAµ(x),

CZ(x) = ∂µZµ(x) − ξZMZχ(x),

C±(x) = ∂µW±
µ (x) ∓ iξ±MWφ±. (B.11)
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In the ’t Hooft gauge the contributions of the would-be
Goldstone bosons to the gauge-fixing terms cancel the
LO mixing between gauge bosons and would-be Goldstone
bosons.

The gauge-fixing terms and the ghost terms break the
gauge invariance of the classical electroweak Lagrangian.
However, the complete electroweak Lagrangian is invari-
ant with respect to BRS transformations of the ghost and
physical fields.

The BRS transformation of the physical fields corre-
sponds to a local gauge transformation (B.1) with gauge-
transformation parameters δθV

a

(x) = δλua(x) determin-
ed by the ghost fields ua(x) and the infinitesimal Grass-
mann parameter δλ. To be precise, the BRS variation
sϕi(x) is defined as left derivative4 with respect to the
Grassmann parameter δλ, i.e. δϕi(x) = δλsϕi(x), and
reads

sϕi(x) =
∑

V b=A,Z,W±

[
XV b

ϕi
ub(x)

+ie
∑
ϕi′

IV
b

ϕiϕi′u
b(x)ϕi′ (x)

]
. (B.12)

The BRS variation for charge-conjugate fields is obtained
from the adjoint of (B.12) as

sϕ+
i (x) =

∑
V b=A,Z,W±

[
XV b

ϕ+
i

ub(x)

−ie
∑
ϕi′

ub(x)ϕ+
i′ (x)I

V b

ϕi′ϕi

]
, (B.13)

where we have used
(
IV

a)+
= I V̄

a

.
The BRS variation of the ghost fields is given by

sub(x) =
ie
2

∑
V a,V c=A,Z,W±

IV
a

V bV cu
a(x)uc(x). (B.14)

The BRS variation of the antighost fields is determined
by the gauge-fixing terms,

sūa(x) = − 1
ξa

CV̄ a{V, Φ, x}. (B.15)

C Conventions for Green functions

Our conventions for Green functions are based on [14]. In
configuration space we use the equivalent notations

Gϕi1 ...ϕin (x1, . . . , xn) = 〈ϕi1 (x1) . . . ϕin(xn)〉. (C.1)

Fourier transformation is defined with incoming momenta,
and the momentum-conservation δ-function is factorized
as

4 The product rule for a Grassmann left derivative reads
s(ϕiϕj) = (sϕi)ϕj + (−1)n(ϕi)ϕisϕj , where n(ϕi) is given by
the ghost plus the fermion number of the field ϕi

(2π)4δ(4)

(
n∑

k=1

pk

)
Gϕi1 ...ϕin (p1, . . . , pn)

=
∫ ( n∏

k=1

d4xk

)
exp


−i

n∑
j=1

xjpj




×Gϕi1 ...ϕin (x1, . . . , xn). (C.2)

Because the field operator ϕ creates antiparticles and an-
nihilates particles, the fields in the Green functions are as-
sociated with outgoing particles (incoming antiparticles).
For propagators we introduce the shorthand notation

Gϕiϕj (p) = Gϕiϕj (p,−p), (C.3)

For the truncation of the external leg ϕik in momentum
space we adopt the convention

G... ϕik
...(. . . , pk, . . .) = G

ϕik
ϕ+

ik (pk)G
... ϕ+

ik
...
(. . . , pk, . . .),

(C.4)

where the field argument corresponding to the truncated
leg is underlined and where we have assumed diagonal
propagators. In truncated Green functions the fields are
associated with incoming particles.

The (diagonal) propagators are related to the 2-point
vertex functions by

Gϕiϕ
+
i (p,−p)Γϕ+

i ϕi(p,−p) = ±i, (C.5)

with + for scalars and gauge bosons and − for fermions
and ghosts.

In the ’t Hooft gauge, the LO propagators are diagonal.
They read

GV aV̄ b

µν (p) =
(
gµν − pµpν

p2

)
GV aV̄ b

T (p) +
pµpν
p2

GV aV̄ b

L (p),

(C.6)

with

GV aV̄ b

T (p) =
−iδV aV b

p2 −M2
V a

,

GV aV̄ b

L (p) =
−iξaδV aV b

p2 − ξaM2
V a

(C.7)

for gauge bosons and

GHH(p) =
i

p2 −M2
H

,

GΦ+
a Φb(p) =

iδV aV b

p2 − ξaM2
Va

(C.8)

for Higgs bosons and would-be Goldstone bosons Φa =
χ, φ± associated to the weak gauge bosons V a = Z,W±.
The propagators for ghost fields are given by

Guaūb

(−p) = −Gūbua

(p) =
iδV aV b

p2 − ξaM2
V a

, (C.9)
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and care must be taken for the sign resulting from the anti-
commutativity of the ghost fields. Similarly, for fermionic
fields we have

GΨαΨ̄β (−p) = −GΨ̄βΨα(p) =
i(p/ + m)αβ
p2 −m2

, (C.10)

where α, β are Dirac indices.
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